scikit prep logo scikit prep: poly

1 2 3 4 5 6 7 8
Notes

You can download the dataset directly but you can also fetch it via:

wget https://calmcode.io/datasets/drawndata2.csv

Here's what the original dataset looks like.

df = pd.read_csv("drawndata2.csv")
X = df[['x', 'y']].values
y = df['z'] == 'a'
plt.scatter(X[:, 0], X[:, 1], c=y);

Here's the PolynomialFeatures at work.

from sklearn.linear_model import LogisticRegression
from sklearn.preprocessing import PolynomialFeatures
from sklearn.pipeline import Pipeline

pipe = Pipeline([
    ("scale", PolynomialFeatures()),
    ("model", LogisticRegression())
])

pred = pipe.fit(X, y).predict(X)
plt.scatter(X[:, 0], X[:, 1], c=pred);