Here's the monte carlo example from the video.
import random
@nb.njit()
def monte_carlo_pi_fast(nsamples):
acc = 0
for i in range(nsamples):
x = random.random()
y = random.random()
if (x ** 2 + y ** 2) < 1.0:
acc += 1
return 4.0 * acc / nsamples
For more information on supported types, see the docs.