You can add this step to the pipeline to get inflation numbers.
@log_step
def add_inflation_features(dataf):
return (dataf
.assign(local_inflation=lambda d: d.groupby('name')['local_price'].diff()/d['local_price'])
.assign(dollar_inflation=lambda d: d.groupby('name')['dollar_price'].diff()/d['dollar_price']))
clean_df = (df
.pipe(start_pipeline)
.pipe(set_dtypes)
.pipe(remove_outliers, min_row_country=20)
.pipe(add_inflation_features))
Remember that it is relatively easy to make a new function, as long as you make a temporary variable to save the current dataframe into.